Energy Efficiency/Conservation

From a utility perspective

By

Tim McLeod

President and General Manager

Alaska Electric Light and Power Company
Why Manage Load Growth?

• AELP Corporate Goals
 – Provide safe and reliable electric service from renewable resources
 – Provide among the lowest average electric rates for regulated utilities within Alaska over the long run while maintaining financial integrity
 – Use electric resources efficiently
New management position at AELP

• Energy Services Specialist
 Assist customers with energy investment decisions
 • Heating systems
 • Insulation and building efficiency
 • Lighting
 • Appliances
 • Electric Vehicles
 Provide information on Federal, State and Local funding
Manage AELP’s DSM program
Trouble shoot customer energy usage problems
Teach electrical safety in schools

Goal: To postpone as long as possible the need for new base-load generation
Approach

- Promote electrical efficiency measures as a way to generate bandwidth for loads that will shift from petroleum-based fuels to hydropower.

- Encourage biomass and heat pumps as alternatives to fuel oil for space heating.
Utility Rate Structure

- Line maintenance
- Generator maintenance
- Admin – Billing, purchasing, Accounting, payroll, regulatory compliance, etc.
- Interest on debt
- Cost of Capital
- Depreciation
- Metering
- Computer systems & security
- System operations
- Vehicle costs
- Fuel
- Taxes
- other

Cost per kWh = Total costs/Total KWh’s
Fuel Cost Comparison (\$/MMBTU/Year)

- Electricity ($0.1144/kWh, 0.99E)
- Heating Oil ($3.82/gal, 0.86E)
- Pellets ($320/ton, 0.85E)
Electric Vehicles

• In Juneau, electric vehicles use about as much oil as space heating

• Only a fraction of the hydro capacity is required to displace the oil used for transportation
Corporate Goal: Use Resources Efficiently

Heating
Oil used for space heating is efficient, around 86%, and comparable in cost to Juneau’s current electric rates using old low-cost hydro projects.

Diesel generation at 30% efficiency or constructing new hydro for space heating will inflate electric rates.

Vehicles
Vehicles use fuel inefficiently, typically around 20%.

Very little new hydro is necessary to displace vehicle fuel.
Alaska’s hydro projects
Indexed to 2012 $

<table>
<thead>
<tr>
<th>Project</th>
<th>Completion Year</th>
<th>Actual Cost</th>
<th>Indexed Cost (2012 $)</th>
<th>avg MWh (2012 $)</th>
<th>$/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terror Lake</td>
<td>1984</td>
<td>$234,000,000</td>
<td>$482,936,170</td>
<td>117000</td>
<td>$4,128</td>
</tr>
<tr>
<td>Solomon Gulch</td>
<td>1981</td>
<td>$69,000,000</td>
<td>$157,853,774</td>
<td>46500</td>
<td>$3,395</td>
</tr>
<tr>
<td>Snettisham 1 (Long Lake)</td>
<td>1973</td>
<td>$88,000,000</td>
<td>$426,800,000</td>
<td>195000</td>
<td>$2,189</td>
</tr>
<tr>
<td>Swan Lake</td>
<td>1984</td>
<td>$96,171,483</td>
<td>$198,481,571</td>
<td>80000</td>
<td>$2,481</td>
</tr>
<tr>
<td>Tyee</td>
<td>1984</td>
<td>$128,691,456</td>
<td>$265,597,260</td>
<td>130000</td>
<td>$2,043</td>
</tr>
<tr>
<td>Bradley Lake</td>
<td>1991</td>
<td>$328,000,000</td>
<td>$580,583,942</td>
<td>370000</td>
<td>$1,569</td>
</tr>
<tr>
<td>Snettisham 2 (Crater Lake)</td>
<td>1989</td>
<td>$65,000,000</td>
<td>$116,759,259</td>
<td>105000</td>
<td>$1,112</td>
</tr>
<tr>
<td>Lake Dorothy</td>
<td>2009</td>
<td>$78,520,419</td>
<td>$84,816,043</td>
<td>75000</td>
<td>$1,131</td>
</tr>
<tr>
<td>Black Bear</td>
<td>1995</td>
<td>$11,000,000</td>
<td>$16,776,730</td>
<td>22200</td>
<td>$756</td>
</tr>
<tr>
<td>Goat Lake</td>
<td>1997</td>
<td>$10,100,000</td>
<td>$15,118,827</td>
<td>20100</td>
<td>$752</td>
</tr>
</tbody>
</table>
Summary

• Energy conservation and efficiency is the least cost alternative to acquire additional energy capacity

• Low cost hydro electricity is a limited resource and space heating is not the best use of those resources

• Vehicles are an efficient use of electric resources and usage is projected to grow substantially over the next twenty years.

• Questions?