ALASKA LOW EMISSION / ELECTRIC FERRY RESEARCH ANALYSIS

Cultivating a Systems Approach to Sustainable Transportation by Implementing Climate Responsive Ferry Vessel Options

02/01/2023 David Turner

Purpose

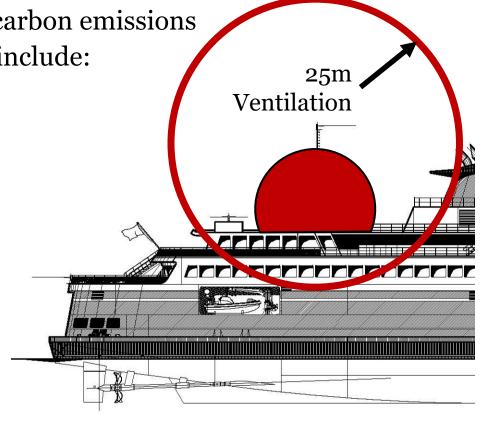
- Evaluate current technology for:
 - Reducing fleet emissions
 - Utilize renewable electricity
 - Improve reliability
 - Improve fleet flexibility
 - Increase service capacity
- Apply findings to define a pilot project

Formerly McDowell Group

State of Current Technology

- Arrangements
- Alternative fuels
- All-electric propulsion

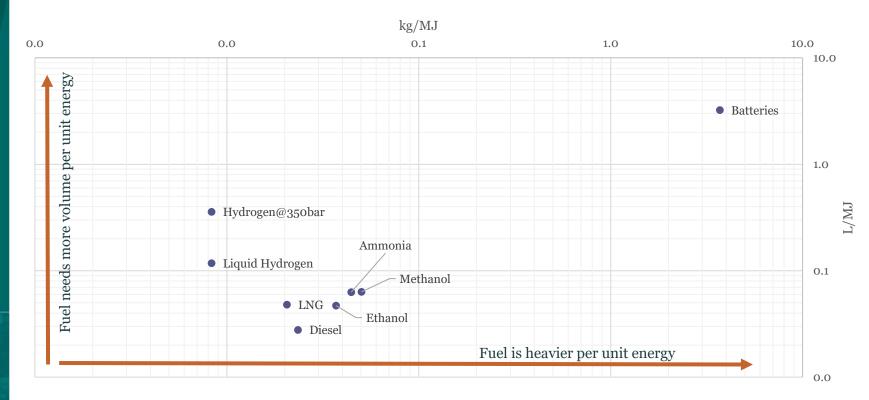
	AURORA	COLUMBIA	KENNICOTT	LECONTE	LITUYA	MATANUSKA	TAZLINA	TUSTUMENA	HUBBARD
Build Date	1977	1974	1998	1974	2004	1963	2019	1964	2019
Length (ft)	235	418	382	235	181	408	280	296	280
Beam (ft)	57	85	85	57	50	74	67	59	67
Dispalcement (LT)	2132	7684	7504	2132	647	5569	3016	3081	3016
Gross Tonnage (ITC)	3124	13009	12635	3124	758	9214	5304	4529	5304
Gross Tonnage (Domestic)	1280	3946	9978	1328	97	3029	3217	2174	3217
Installed Horsepower	4300	10800	13200	4300	2000	7200	6000	5100	6000
Service Speed (kt)	14.5	17.3	16.8	14.5	11.5	16.5	16.5	13.3	16.5
Fuel Use (gal/hr)	190	397	354	188	55	234	250	151	250
Normal Crew Count	24	63	55	24	5	48	14	38	14
Passenger Capacity	250	499	450	225	125	450	290	160	290
Vehicle Capacity (lane ft)	660	2660	1560	660	300	1675	1060	680	1060


Alternative fuels

Biodiesel, LNG, methanol, ammonia, hydrogen,

Essential step to lowering carbon emissions

• Challenges (not biodiesel) include:


- Availability
- Fuel price
- Hazardous zones
- Low flashpoint
- Crew training
- Automation
- Increased parasitic loads
- More weight and volume

Alternative fuels

Volume and mass per unit energy

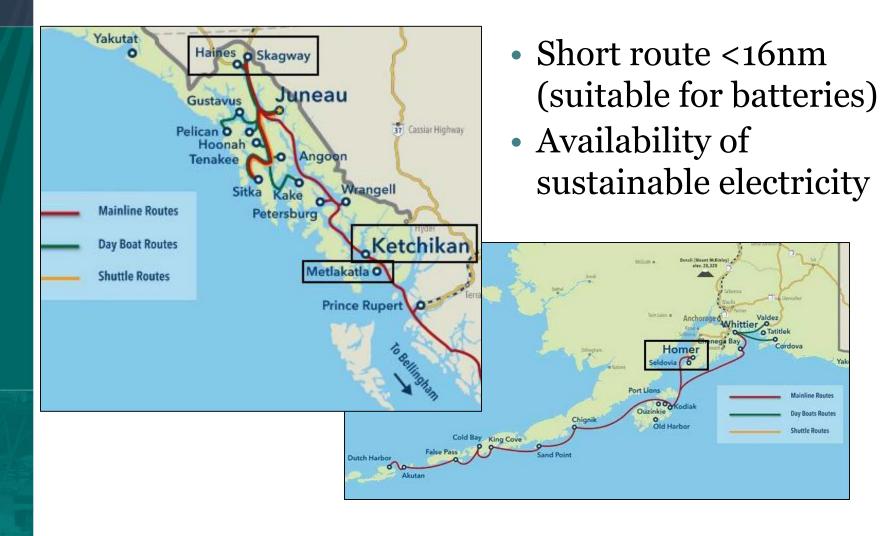
Example Hybrid/All-Electric Vessels

Domestic Vessels:

- Casco Bay
- New Governors Island Ferry
- Cameron Parish Ferry
- TxDOT Galveston Ferry

• International Vessels (year entered service):

- AMPERE (2015)
- COLOR HYBRID (2019)
- ELEKTRA (2017)
- BASTØ ELECTRIC (2021)



Charging Systems

Pilot Routes

Pilot Project Vessel Particulars

- Sized for current and future expected passenger and car demand:
 - Length
 - Passenger capacity
 - Car capacity
 - Propulsion Arrangement
 - Installed propulsive power
 - Battery capacity
 - Gross registered tonnage
 - Cruise speed
 - Car deck
 - Cost

>150

>20

Hybrid

3000 hp

>4000 kWh

<100 tons

10-14 kt

enclosed

~\$50 million ea.

System Sizing

			"95% MCR" Operation (Cruise Speed = 13.2kt)				Slow Operation (Cruise Speed = 9.7kt)		
	Distance		Crossing Energy	Battery Size	Crossing Time	CO2 saved	Crossing Energy	Battery Size	Crossing Time
Route	nm	Charging	kWh	kWh	min	MT	kWh	kWh	min
Skagway - Haines	12.6	One Port	4262	5730	62	3.0	3274	4402	80
		Both Ports	2131	2865			1637	2201	
Ketch Met.	7.0	One Port	2285	3073	36	1.7	1783	2398	46
		Both Ports	1143	1536			892	1199	
Homer - Seldovia	15.6	One Port	5321	7153	76	3.7	4073	5476	99
		Both Ports	2660	3577			2037	2738	

Representative Emissions from Conventional Diesel Mechanical Vessel (kg per round trip)

Route	NO _X	СО	PM
Skagway - Haines	27	8	0.9
Ketch Met.	14	4	0.5
Homer - Seldovia	33	11	1.1

Charging requires shoreside battery

Conclusions

- Pilot project provides AMHS opportunity to test latest technology
- Small electric shuttle could:
 - improve reliability
 - expand service
 - reduce emissions

